Lunar Meteorites in Composition Space

Lunar meteorites span a wide range of compositions, a range that far exceeds that of meteorites from any other parent body. The charts below are useful for distinguishing different lunar meteorites from EACH OTHER. They are not particulary useful for distinguishing lunar meteorites from terrestrial rocks. If you are interested in whether your rock has a composition consistent with a meteorite, go here.


The chart above is one of several that can be used for classifying lunar meteorites by composition and distinguishing one lunar meteorite from another. This particular chart is useful because both FeO (total iron expressed as percent FeO) and Th (thorium expressed in µg/g or ppm [parts-per-million]) have been measured on the surface of the Moon by orbital spacecraft (Clementine and Lunar Prospector). In the large chart, Th is shown on a logarithmic scale because the range in Th concentrations is so great. The same data are shown on a linear scale in the inset on the upper right, which excludes only the highest-Th point (30 µg/g), that for the impact-melt breccia lithology of SaU 169. For most meteorites, one point representing the mean composition of all stones is plotted. For a few meteorites with multiple lithologies 2 or 3 points are plotted, each representing a different lithology. Keep in mind that meteorites that plot together on this chart (e.g., the tight cluster of the inset in the upper left) may plot apart in charts using other element pairs (below). All of the encircled dark red points represent unbrecciated mare basalts; breccias consisting mainly of basalt are in pink.
All of the data represented here are from my laboratory.

Figure Legend
symbol
based on data for note
1
NEA 001
 
2
DaG 262, 996, 1042, & 1048  
3
NEA 003 2 points: mare basalt and regolith breccia
4
DaG 400 & 1058 assumed paired stones
8 & 9
Kalahari 008 & 009 2 points plotted
  
   
A
ALHA 81005
 
B
Y-791197
 
C
Y-793169
 
D
Y-82192, 82193, & 86032
 
E
EET 87521 & 96008
 
F
Y-981031
 
G
GRA 06157
 
H
Y-983885
 
J
Asuka 881757
 
L
LAP 02205, 02224, 02226, 02436, 03632, & 04841
 
M
MAC 88104 & 88105
 
O
MIL 05035
 
P
PCA 02007
 
Q
QUE 94281
 
R
LAR 06638
 
S
MIL 07006  
T
MET 01210
 
U
QUE 93069 & 94269
 
X
MIL 090034 May be all paired despite compositional differences.
Y
MIL 090036
Z
MIL 090070 & 090070
 
   
a
NWA 032 & 479
 
b
NWA 482
 
c
NWA 773, 2700, 2727, 2977, 3160, 3170, 3333, 6950, & Anoual 3 points: olivine gabbro, mare basalt, and breccia
d
NWA 2200  
e
NWA 2995, 2996, 3190, 4503, 5151, 5152, 6252, 6554, 6555, unnamed 3b, & unnamed 12 assumed paired stones
f
NWA 2998/7262
 
g
NWA 3136
 
h
NWA 3163, 4483, 4881, & 6275  
i
NWA 4472/4485  
j
NWA 4819
 
k
NWA 3136
 
l
NWA 4884
 
m
NWA 4898
 
n
NWA 4932
 
o
NWA 4936, 5406, [6221], 6355, 6470, 6570, 6687, & 7190
assumed paired stones
p
NWA 5000
 
q
NWA 5153
 
r
NWA 5207
 
s
NWA 5744
 
t
NWA 6481
 
u
NWA 6578  
v
NWA 6687
 
w
NWA 6721
 
x
NWA 6888
y
NWA 7022 2 points, breccia and large clast
z
NWA 7173
 
â
NWA 7493 2 points, matrix-rich and clast-rich
ç
NWA 7022  
ñ
NWA 7274  
ø
NWA unnamed 04  
ë
NWA unnamed 43  
ç
NWA unnamed 44  
ƒ
NWA unnamed 46
 
     
©
Calcalong Creek
 
 
   
!
Dhofar 025, 301, & 304  
@
Dhofar 026 & 461
compositionally identical to Shisr 166
#
Dhofar 081, 280, & 910  
§
Dhofar 287
mare basalt only (no data for regolith breccia portion)
%
Dhofar 302
 
&
Dhofar 303, 305, 306, 309, 310, 489, 908, 911, & 1085
 
{
Dhofar 490 & 1084
 
}
Dhofar 733 & unnamed 38
 
[
Dhofar 925 & 960
All paired despite compositional differences.
]
Dhofar 961
µ
Dhofar 1180
 
»
Dhofar 1428
 
\
Dhofar 1436 & 1443
 
/
JaH 348  
¢
Dhofar 1442  
¿
Dhofar 1527  
?
Dhofar 1528  
«
Dhofar 1627  
¼
Dhofar 1629  
½
Dhofar 1669  
¾
Dhofar 1673 & unnamed 40  
$
SaU 169
2 points: impact-melt breccia and regolith breccia
¥
SaU 300
 
£
SaU 449
likely launch paired with Dhofar 925/960/961
>
Shişr 160
 
<
Shişr 161
 
ß
Shisr 162  
±
Shisr 166
compositionally identical to Dhofar 026 et al.
     



Comparison of compositions of lunar meteorites (blue circles) to surface and trench soils from the Apollo mission (colored fields) and
core soils from the Luna missions (diagonal pink squares).

 

Some meteorites are distinct in being richer or poorer in sodium (Na2O). Compare with Sc-Eu, below.
  



The Sc-Sm (scandium-samarium) chart above is similar to the FeO-Th chart in that Sc, which is carried mainly by pyroxenes, increases from feldspathic meteorites (high plagioclase, low pyroxene) to basaltic meteorites (high pyroxene, low plagioclase). Sc does a better job of resolving the feldspathic lunar meteorites than does FeO.
  



Some meteorites are distinct in Th/Sm ratio.
  



Europium (Eu) is a trace element that reflects plagioclase abundance and composition. Some lunar meteorites are distinct on this chart (Dhofar 733, NWA 773 et al.).
  
 

The Cr/Sc ratio (chromium/scandium) is a proxy for the olivine/pyroxene ratio.
  



All iridium (Ir) in lunar meteorites derives from asteroidal meteorites (e.g., chondrites, iron meteorites) that strike the lunar surface. The crystalline mare basalts contain essentially zero Ir because they are not breccias. The most Ir rich lunar meteorites are regolith breccias, which contain up to several percent micrometeorite material.
  

back to lunar meteorite list


Prepared by:

Randy L. Korotev


Department of Earth and Planetary Sciences
Washington University in St. Louis


Please don't contact me about the meteorite you think you’ve found until you read this and this.

e-mailkorotev@wustl.edu

Last revised16-Nov-2012


Google

WWW http://meteorites.wustl.edu//