Lunar Meteorite

Dar al Gani 400 & 1058
(paired stones)



Dar al Gani 400 in the desert

(photo credit: anonymous finder)



A sawn slab of DaG 400. The maximum dimension is ~9 cm.  The rock appears to be a regolith breccia with at least one large melt-breccia clast (left of center). 

(photo credit: Randy Korotev)


Two sides of a small slab of Dar al Gani 400. Millimeter ticks on scale.

(photo credit: Randy Korotev)


Two sides of another small slab of Dar al Gani 400. Millimeter ticks on scale.

(photo credit: Randy Korotev)


a slice of DaG 400 containing a vesicular clast of glassy impact-melt breccia (right).

(photo credit: Chris Handler)


Another slice of DaG 400 with a clast of some plutonic rock, probably a norite (~2 cm wide).

(photo credit: Greg Hupé)


Exterior of sawn-in-two DaG 1058. Scale unknown.

(photo credit: Heritage Auctions)


Sawn faces of DaG 1058. Scale unknown.

(photo credit: Heritage Auctions)


from The Meteoritical Bulletin, No. 82, Meteoritics & Planetary Science 33, A221–A240 (1998)

Dar al Gani 400

Found: 1998 March 10
Mass: 1425 g

Lunar meteorite (anorthositic breccia)

A 1.425 kg stone was found in Dar al Gani in the Libyan Sahara.

Classification and description (J. Zipfel, MPI): the meteorite is partly covered with a brownish fusion crust; fresh surfaces are gray to dark gray; matrix is well consolidated; clasts include subophitic and fine-grained to microporphyritic impact-melt breccias, granulitic fragments, intergranularly recrystallized anorthosites, and mineral fragments; chemical and O isotope composition is characteristic of lunar highland meteorites (Zipfel et al., 1998b); abundances and composition of noble gases do not suggest a pairing with DaG 262 (Scherer et al., 1998b). For further details, see Zipfel et al. (1998b). Type specimen and two polished sections are with the MPI; main mass with finder.


from The Meteoritical Bulletin, No. 101, Meteoritics & Planetary Science

Dar al Gani 1058


Al Jufrah, Libya

Found: 1998 Sep 9

Mass: 1815 g

Lunar meteorite (feldspathic breccia)


History: A fairly large stone was found in 1998 September on the Dar al Gani plateau, Libya, near the find site of Dar al Gani 400.

Physical characteristics: Compact, fine grained gray stone (1815 g) with visible whitish to pale gray clasts and partially coated by orange-brown weathering products.

Petrography: (A. Irving and S. Kuehner, UWS) Very fine grained melt matrix breccia with larger feldspathic clasts. Minerals are anorthite, olivine, low-Ca pyroxene, more calcic pigeonite, Ti-bearing chromite, ilmenite and troilite.

Geochemistry: Olivine (Fa16.0-33.9; FeO/MnO = 90-108), low-Ca pyroxene (Fs29.8-30.3Wo4.8-6.4, FeO/MnO = 50-57), pigeonite (Fs33.7Wo10.2; Fs43.6Wo7.3; FeO/MnO = 59-61). Bulk composition (R. Korotev, WUSL): mean values from INAA of subsamples are 3.0 wt.% FeO, 5.1 ppm Sc, 80 ppm Ni, 1.4 ppm La, 0.6 ppm Sm, 0.69 ppm Eu, 0.48 ppm Yb, 0.2 ppm Th.

Classification: Lunar (feldspathic breccia). This specimen was found close to Dar al Gani 400, and similarities in mineralogy and bulk composition indicate that these are likely paired.

Specimens: A total of 25 g of type material is on deposit at UWS. The remainder is held by an anonymous collector.


Randy Says…

Compositionally, Dar al Gani 400/1058 is a typical feldspathic lunar meteorite.


More Information

Meteoritical Bulletin Database

Dar al Gani 400 | 1058


Arai T., Yamamoto A., Ohtake M., Matsunaga T., Haruyama J., Hiroi T., Sasaki S., and Matsui T. (2011) Lunar crustal mineralogy inferred from lunar meteorites and Kaguya data (abstract). The 34rd Symposium on Antarctic Meteorites, p. 3-4, Tokyo.

Arai T., Hiroi T., Sasaki S., and Matsui T. (2013) Origin of the lunar crust inferred from mineralogy and reflectance spectra of lunar meteorites (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1016.

Bogard D.D., Garrison D. H., and Nyquist L. E. (2000) Argon-39–argon-40 ages of lunar highland rocks and meteorites (abstract). In Lunar and Planetary Science XXXI, abstract no. 1138, Lunar and Planetary Institute.

Bukovanska M., Dobosi G., Brandstdtter F., and Kurat G. (1999) Dar al Gani 400: Petrology and geochemistry of some major lithologies, Meteoritics & Planetary Science 34, A21.

Cahill J. T., Floss C., Anand M., Taylor L. A., Nazarov M. A., and Cohen B. A. (2004) Petrogenesis of lunar highlands meteorites: Dhofar 025, Dhofar 081; Dar al Gani 262, and Dar al Gani 400. Meteoritics & Planetary Science 39, 503–530.

Calzada-Diaz A., Joy K. H., Crawford I. A., and Nordheim T. A. (2015) Constraining the source regions of lunar meteorites using orbital geochemical data. Meteoritics & Planetary Science 50, 214-228.

Cohen B. A., Swindle T. D., and Kring D. A. (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290, 1754-1756.

Cohen B. A., Swindle T. D., and Kring D. A. (2005) Geochemistry and 40Ar-39Ar geochronology of impact-melt clasts in feldspathic lunar meteorites: Implications for lunar bombardment history. Meteoritics & Planetary Science 40, 755-777.

Consolmagno G. J., Russell S. S., and Jeffries T. E. (2004) An in–situ study of REE abundances in three anorthositic impact melt lunar highland meteorites (abstract). Lunar and Planetary Science XXXV, abstract no. 1370, Lunar and Planetary Institute.

Fischer-Gödde M., Becker H., Wombacher F. (2010) Highly siderophile element abundances and 187Os/188Os in lunar impact melt rocks: Implications for late accretion processes in the Earth-Moon system meteorites. 41st Lunar and Planetary Science Conference, abstract no. 2262.

Fritz J. (2012) Impact ejection of lunar meteorites and the age of Giordano Bruno. Icarus 221, 1183-1186.

Joy K. H. (2013) Trace elements in lunar plagioclase as indicators of source lithology (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1033.

Joy K. H., Crawford I. A., Russell S. S., Swinyard B., Kellett B., and Grande M. (2006) Lunar regolith breccias MET 01210, PCA 02007 and DAG 400: Their importance in understanding the lunar surface and implications for the scientific analysis of D-CIXS data (abstract). In Lunar and Planetary Science XXXVII, abstract no. 1274, Lunar and Planetary Institute.

Joy K. H., Crawford I. A., Russell S. S., and Kearsley A. T. (2010) Lunar meteorite regolith breccias: An in situ study of impact melt composition using LA-ICP-MS with implications for the composition of the lunar crust. Meteoritics & Planetary Science 45, 917–946.

Korotev R. L. (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65, 297–346.

Korotev R. L and Irving A. J. (2013) Keeping up with the lunar meteorites - 2013 (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1216.

Korotev R. L., Jolliff B. L., Zeigler R. A., Gillis J. J., and Haskin L. A. (2003) Feldspathic lunar meteorites and their implications for compositional remote sensing of the lunar surface and the composition of the lunar crust, Geochim. Cosmochim. Acta 67, 4895-4923.

Masahiro M., Tomioka N., Ohtani E., Seto Y., Nagaoka H, Götze J, Miyake A., Ozawa S., Sekine T., Miyahara M., Tomeoka K., Matsumoto M., Shoda N., Hirao N., and Kobayashi T. (2018) Discovery of moganite in a lunar meteorite as a trace of H2O ice in the Moon’s regolith. Science Advances, 4, eaar4378, DOI: 10.1126/sciadv.aar4378

Nishiizumi K. (2003) Exposure histories of lunar meteorites (abstract). In Evolution of Solar System Materials: A New Perspective from Antarctic Meteorites, p. 104, National Institute of Polar Research, Tokyo.

Rochette P., Gattacceca J., Ivanov A. V., Nazarov M. A., and Bezaeva N. S. (2010) Magnetic properties of lunar materials: Meteorites, Luna and Apollo returned samples. Earth Planet. Sci. Lett., doi:10.1016/j.epsl.2010.02.007.

Scherer P., Pätsch M., and Schultz L. (1998) Noble-Gas study of the new lunar highland meteorite Dar al Gani 400. Meteoritics & Planetary Science 33, A135-A136.

Schlüter J., Schultz L., Thiedig F., Al-Mahdi B. O., and Abu Aghreb A. E. (2002) The Dar al Gani meteorite field (Libyan Sahara): Geological setting, pairing of meteorites, and recovery density, Meteoritics & Planetary Science 37, 1079-1093.

Semenova A. S., Nazarov M. A., Kononkova N. N., Patchen A., Taylor L. A. (2000) Mineral chemistry of lunar meteorite Dar al Gani 400 (abstract), in Lunar and Planetary Science XXXI, CD-ROM #1252.

Warren P. H., Ulff-Møller F., and Kallemeyn G. W. (2005) “New” lunar meteorites: Impact melt and regolith breccias and large-scale heterogeneities of the upper lunar crust. Meteoritics &.Planetary Science 40, 989–1014.

Zipfel J., Spettel B., Palme H., Wolf D., Franchi I., Sexton A. S., Pillinger C. T., and Bischoff A. (1998) Dar al Gani 400: Chemistry and petrology of the largest lunar meteorite. Meteoritics & Planetary Science 33, A171.



Back to: Lunar Meteorites | List of Lunar Meteorites | Top of Page


Prepared by
: Randy L. Korotev
Department of Earth and Planetary Sciences
Washington University in St. Louis

Please don’t contact me about the meteorite you think you’ve found until you read this and this.


Last revised:
20 June 2018