E&PS_WU_logo.jpg

 

Lunar Meteorite

LaPaz Icefield 02205, 02224, 02226, 02436,
03632, & 04841
(paired stones)

Antarctica

 

LAP 02205 is the first lunar meteorite in the U.S. Antarctic collection to be a crystalline mare basalt. The meteorite is almost entirely covered by fusion crust. 

(photo credit: NASA)

 

Four sides of the meteorite. Note the flow lines in the fusion crust of the north face (upper left) and the regmaglypts on the south and west faces.

(photo credit: NASA)

 

lm_lap02205_in_field.jpg

LAP 02205 in the field
(photo credit: ANSMET)

 

LAP 02224
(photo credit: NASA)

 

lm_lap02226e.jpg

LAP 02226
(photo credit: NASA)

 


LAP 02436
(photo credit: NASA)

 

LAP 03632
(photo credit: NASA)

 

LAP 4841
(photo credit: NASA)

 

lm_lap04841_1141m.jpg

A chip of LAP 04841 in the lab. Maximum dimension: 7 mm

(image credit: Randy Korotev)

 

Listed in The Meteoritical Bulletin, No. 88, Meteoritics & Planetary Science 39, A215–A272 (2004)

from Antarctic Meteorite Newsletter, vol. 26, No. 2, 2003

LaPaz Icefield 02205

Location: LaPaz Ice Field
Dimensions (cm): 10.0 x 8.5 x 5.5
Weight (g): 1226.300

Lunar-Basalt

Macroscopic Description: Kathleen McBride. 95% of the exterior surface has black fusion crust. Small areas of material have been plucked out. The fusion crust exhibits a slight ropy texture with polygonal fractures. The interior consists of interlocking tan and white coarse-grained minerals. There are numerous criss-crossing fractures filled with black glass.

Thin Section (,6) Description: Tim McCoy, Linda Welzenbach. The section consists of coarse-grained unbrecciated basalt with elongate pyroxene (up to 0.5 mm) and plagioclase laths (up to 1 mm) (~60:40 px:plag), rare phenocrysts of olivine (up to 1 mm) and interstitial oxides and late-stage mesostasis. Shock effects include undulatory extinction in pyroxene and shock melt veins and pockets. Microprobe analyses reveal pigeonite to augite of Fs26-80Wo14-36, plagioclase is An85-90Or0-1 and a single olivine phenocryst is Fa50. The Fe/Mn ratio in the pyroxenes averages ~60. The meteorite is a lunar olivine-bearing basalt.

Oxygen Isotope Analysis: T.K. Mayeda and R.N. Clayton. Our analysis for LAP 02205 gives: d 18O = +5.6 and d 17O = +2.7. This is consistent with a lunar basalt.

 

Listed in The Meteoritical Bulletin, No. 88, Meteoritics & Planetary Science 39, A215–A272 (2004)

from Antarctic Meteorite Newsletter, vol. 27, No. 1, 2004

LaPaz Icefield 02224, LaPaz Icefield 02226, & LaPaz Icefield 02436

Location: LaPaz Ice Field
Dimensions (cm): 5.0 x 5.0 x 4.0, 6.0 x 6.0 x 3.5, & 5.5 x 4.25 x 2.25
Weight (g): 252.5, 244.1, & 58.970

Lunar-Basalt

Macroscopic Description: Kathleen McBride. 50-90% of these lunar meteorite exteriors are covered with shiny, black, striated fusion crust. The interior has a granular texture with interconnected linear mineral grains, black, white and brown in color. There are criss-crossing fractures that are filled with black glass.

Thin Section (,4, ,6, and ,4) Description: Tim McCoy, Linda Welzenbach. These sections consist of a coarse-grained unbrecciated basalt with elongate pyroxene (up to 0.5 mm) and plagioclase laths (up to 1 mm) (~60:40 px:plag), rare phenocrysts of olivine (up to 1 mm) and interstitial oxides and late-stage mesostasis. Shock effects include undulatory extinction in pyroxene and shock melt veins and pockets. Microprobe analyses reveal pigeonite to augite of Fs20-80Wo10-36, plagioclase is An85-90Or0-1 and a single olivine phenocryst is Fa35. The Fe/Mn ratio in the pyroxenes averages ~60. The meteorites are lunar olivine-bearing basalt. These are almost certainly paired with LAP 02205.

 

listed in The Meteoritical Bulletin, No. 89, Meteoritics & Planetary Science 40, A201–A263 (2005)

from Antarctic Meteorite Newsletter, vol. 27, No. 3, 2004

LaPaz Icefield 03632

Location: LaPaz Ice Field
Dimensions (cm): 5.5 x 3.5 x 3.0
Weight (g): 92.566

Lunar-Basalt

Macroscopic Description: Kathleen McBride. ~75% of the exterior has shiny black fusion crust. The interior is pinkish-tan with white linear minerals and glass veins. This sample is paired with the LAP samples from the '02 season.

Thin Section (,2) Description: Tim McCoy, Linda Welzenbach. The section consists of a coarse-grained unbrecciated basalt with elongate pyroxene (up to 0.5 mm) and plagioclase laths (up to 1 mm) (~60:40 px:plag), rare phenocrysts of olivine (up to 1 mm) and interstitial oxides and late-stage mesostasis. Shock effects include undulatory extinction in pyroxene and shock melt veins and pockets. Microprobe analyses reveal pigeonite to augite of Fs27-52Wo12-33, plagioclase is An87Or0-1 and a single olivine phenocryst is Fa32-99. The Fe/Mn ratio in the pyroxenes averages ~60. The meteorite is a lunar olivine-bearing basalt and is almost certainly paired with LAP 02205, LAP 02226, LAP 02224 and LAP 02436.

 

listed in The Meteoritical Bulletin, No. 90, Meteoritics & Planetary Science 41, 1383–1418 (2006)

from Antarctic Meteorite Newsletter, vol. 29(2), September, 2006 - LAP 04841

LaPaz Icefield 04841

Location: LaPaz Ice Field
Dimensions (cm): 5.0 x 2.5 x 2.5
Weight (g): 55.992

Lunar-Basalt

Macroscopic Description: Kathleen McBride. Dull, black fusion crust covers over 50% of the exterior. Some surfaces have shiny areas. The interior is a pinkish tan and white matrix with black glass filled veins.

Thin Section (,2) Description: Valerie Reynolds, Tim McCoy and Linda Welzenbach. The meteorite is almost certainly paired with the LAP 02205 pairing group. LAP 02205 was described as follows: The section consists of coarse-grained unbrecciated basalt with elongate pyroxene (up to 0.5 mm) and plagioclase laths (up to 1 mm) (~60:40 px:plag), rare phenocrysts of olivine (up to 1 mm) and interstitial oxides and late-stage mesostasis. Shock effects include undulatory extinction in pyroxene and shock melt veins and pockets. Microprobe analyses reveal pigeonite to augite of Fs26-80Wo14-36, plagioclase is An85-90Or0-1 and a single olivine phenocryst is Fa50. The Fe/Mn ratio in the pyroxenes averages ~60. The meteorite is a lunar olivine-bearing basalt.

 

Randy Says…

At 1.93 kg, it is the largest basaltic lunar meteorite and the largest lunar meteorite from Antarctica.

There are six stones, all with nearly complete fusion crusts. They were found along a linear trend a few kilometers long over 3 field seasons.

Compositionally and mineralogically, the basalt resembles the basalts of the Apollo 12 site.

 

More Information

Meteoritical Bulletin Database

LAP 02205 | 02224 | 02226 | 02436 | 03632 | 04841

Map

 

ANSMET Location Map

 

References

Anand M., Taylor L. A., Neal C., Patchen A. and Kramer G. (2004) Petrology and geochemistry of LAP 02 205: A new low-Ti mare-basalt meteorite (abstract), Lunar and Planetary Science XXXV, abstract no. 1626, Lunar and Planetary Institute, Houston.

Anand M., Taylor L. A., Floss C., Neal C. R., Terada K., and Tanikawa S. (2006) Petrology and geochemistry of LaPaz Icefield 02205: A new unique low-Ti mare-basalt meteorite. Geochimica et Cosmochimica Acta 70, 246–264.

Anand M., Tartèse R., Barnes J. J., Starkey N. A., Franchi I. A., and Russell S. S. (2013) Abundance, distribution, and isotopic composition of water in the Moon as revealed by basaltic lunar meteorites (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1957.

Basilevsky A. T., Neukum G., and Nyquist L. (2010) Lunar meteorites: What they tell us about the spatial and temporal distribution of mare basalts (abstract). In Lunar and Planetary Science XLI, abstract no. 1214, 41st Lunar and Planetary Science Conference, Houston.

Calzada-Diaz A., Joy K. H., Crawford I. A., and Nordheim T. A. (2015) Constraining the source regions of lunar meteorites using orbital geochemical data. Meteoritics & Planetary Science 50, 214-228.

Chokai J., Mikouchi T., Arai T., Monkawa A., Koizumi E., Miyamoto M. (2004) Mineralogical comparison between LAP02205 and lunar mare basalts (abstract). Antarctic Meteorites XXVIII, p. 4-5, National Institute of Polar Research, Tokyo.

Collins S. J., Righter K., and Brandon A. D. (2005) Mineralogy, petrology and oxygen fugacity of the LaPaz icefield lunar basaltic meteorites and the origin of evolved lunar basalts (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1141, 36th Lunar and Planetary Science Conference, Houston.

Day J. M. D. and Taylor L. A. (2007) On the structure of mare basalt lava flows from textural analysis of the LaPaz Icefield and Northwest Africa 032 lunar meteorites. Meteoritics & Planetary Science 42, 3–17.

Day J. M. D., Taylor L. A., Patchen A. D, Schnare D. W., and Pearson D. G. (2005) Comparative petrology and geochemistry of the LaPaz mare basalt meteorites (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1419, 36th Lunar and Planetary Science Conference, Houston.

Day J. M. D., Pearson D. G., Taylor L. A. (2005) 187Re-187Os isotope disturbance in La Paz mare basalt meteorites (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1424, 36th Lunar and Planetary Science Conference, Houston.

Day J. M. D., Nowell G. M., Norman M. D., Pearson D. G., Chertkoff D. G., and Taylor L. A. (2006) Evidence for age-progressive melting of increasingly incompatible-element-enriched mantle reservoirs on the Moon? (abstract). In Lunar and Planetary Science XXXVII, abstract no. 2235, Lunar and Planetary Institute, Houston.

Day J. M. D., Taylor L.A., Hill E., Liu Y. (2005) Textural analysis and crystallization histories of the LaPaz mare basalt meteorites (abstract). Meteoritics and Planetary Science 40, A37.

Day J. M. D., Taylor L. A., Floss C., Patchen A. D., Schnare D. W., Pearson D. G. (2006) Comparative petrology, geochemistry and petrogenesis of evolved, low-Ti lunar mare basalt meteorites from the La Paz Icefield, Antarctica. Geochimica et Cosmochimica Acta 70, 1581-1600.

Day J. M. D., Pearson D. G., and Taylor L. A. (2007) Highly siderophile element constraints on accretion and differentiation of the Earth-Moon system. Science 315, 217–219.

Elardo S. M., Shearer C. K. Jr., Fagan A. L., Neal C. R., Burger P. V., and Borg L. E. (2012) Diversity in low-Ti mare magmatism and mantle sources: A Perspective from lunar meteorites NWA 4734, NWA 032, and LAP 02205 (abstract). In Lunar and Planetary Science XLIII, abstract no. 2648, 43rd Lunar and Planetary Science Conference, Houston.

Elardo S. M., Shearer C. K., Fagan A. L., Borg L. E., Gaffney A. M., Burger P. V., Neal C. R., and McCubbin F. M. (2013) The origin of young mare basalts inferred from lunar meteorites NWA 4734, NWA 032, and LAP 02205 (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 2762.

Elardo S. M., Shearer C. K. Jr., Fagan A. L., Borg L. E., Gaffney A. M., Burger P. V., Neal C. R., Fernandes V. A., and McCubbin F. M. (2013) The origin of young mare basalts inferred from lunar meteorites Northwest Africa 4734, 032, and LaPaz Icefield 02205. Meteoritics & Planetary Science 49, 261–291. doi: 10.1111/maps.12239

Elardo S. M., Shearer C. K., Vander Kaaden K. E., McCubbin F. M., and Bell A. S. (2015) Petrogenesis of primitive and evolved basalts in a cooling Moon: Experimental constraints from the youngest known lunar magmas. 46th Lunar and Planetary Science Conference, abstract no. 2155.

Fernandes V. A. and Burgess R. (2006) Ar-Ar studies of two lunar mare rocks: LAP02205 and EET96008 (abstract). In Lunar and Planetary Science XXXVII, abstract no. 1145, Lunar and Planetary Institute, Houston.

Fernandes V. A., Burgess R., and Morris A. (2009) 40Ar-39Ar age determinations of lunar basalt meteorites Asuka 881757, Yamato 793169, Miller Range 05035, LaPaz Icefield 02205, Northwest Africa 479, and basaltic breccia Elephant Moraine 96008. Meteoritics & Planetary Science 44, 805–821.

Fernandes V. A. S. M., Fritz J. P., Wünnemann K., and Hornemann U. (2010) K-Ar ages and shock effects in lunar meteorites (abstract). EPSC Abstracts, Vol. 5, EPSC2010-237.

Guiza B. G. and Day J. M. D. (2013) Insights into volcanism on the moon from quantitative textural analysis of mare basalts (abstract). In 44th Lunar and Planetary Science Conference, abstract no. 1825.

Hallis L. H. Joy K. H. Anand M., and Russell S. S. (2007) Compositional analysis of the very-low-Ti mare basalt component of NWA 773 and comparison with low-Ti basalts, LAP 03632 & 02436 (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1703, 38th Lunar and Planetary Science Conference, Houston.

Hill E., Taylor L. A., and Liu Y. (2007) LaPaz 04841: Comparative petrology and textural study of a new lunar mare basalt meteorite (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1399, 38th Lunar and Planetary Science Conference, Houston.

Hill E., Taylor L. A., Floss C., Liu Y. (2009) Lunar meteorite LaPaz Icefield 04841: Petrology, texture, and impact-shock effects of a low-Ti mare basalt. Meteoritics & Planetary Science 44, 87–94.

Isaacson P. J., Liu Y., Patchen A., Pieters C. M., and Taylor L. A. (2009) Integrated analyses of lunar meteorites: Expanded data for lunar ground truth (abstract). In Lunar and Planetary Science XL, abstract no. 2119, 40th Lunar and Planetary Science Conference, Houston.

Isaacson P. J., Liu Y., Patchen A. D., Pieters C. M., and Taylor L. A. (2010) Spectroscopy of lunar meteorites as constraints for ground truth: Expanded sample collection diversity (abstract). In Lunar and Planetary Science XLI, abstract no. 1927, 41st Lunar and Planetary Science Conference, Houston.

Jolliff B. L., Zeigler R. A., and Korotev R. L. (2004) Petrography of lunar meteorite LAP 02205, a new low-Ti basalt possibly launch paired with NWA 032 (abstract). In Lunar and Planetary Science XXXV, abstract no. 1438, Lunar and Planetary Institute, Houston.

Joy K. H., Crawford I. A., Russell S. S., and Kearsley A. (2004) Mineral chemistry of LaPaz Ice Field 02205 – A new lunar basalt (abstract). In Lunar and Planetary Science XXXV, abstract no. 1545, Lunar and Planetary Institute, Houston.

Joy K. H., Crawford I. A., Russell S. S., and Kearsley A. (2005) LAP 02205, LAP 02224 and LAP 02226 - Lunar mare basaltic meteorites. Part 1: Petrography and mineral chemistry (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1697, 36th Lunar and Planetary Science Conference, Houston.

Joy K. H., Crawford I. A., Russell S. S., and Kearsley A. (2005) LAP 02205, LAP 02224 and LAP 02226 - Lunar mare basaltic meteorites. Part 2: Geochemistry and crystallisation (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1701, 36th Lunar and Planetary Science Conference, Houston.

Joy K. H., Crawford I. A., Downes H., Russell S. S., and Kearsley A. T. (2006) A petrological, mineralogical, and chemical analysis of lunar mare basalt meteorite LaPaz Icefield 02205, 02224, and 02226. Meteoritics & Planetary Science 41, 1003–1025.

Koizumi E., Chokai J., Mikouchi M., Makishima J., and Miyamoto M. (2005) Crystallization of lunar mare meteorite LAP 02205 (abstract), In 68th Annual Meteoritical Society Meeting, number 5152.

Koizumi E., Chokai J., Mikouchi M., and Miyamoto M. (2005) Crystallization experiment on lunar mare basalt LAP 02205 (abstract), In Antarctic Meteorites XXIX, 32-33, National Institute of Polar Research, Tokyo.

Koizumi, E.; Mikouchi, T.; Chokai, J.; Miyamoto, M. (2006) Crystallization of lunar basaltic meteorites Northwest Africa 032 and 479: Preservation of the parent melt composition and relationship to LAP 02205. abstract no. 1586, Lunar & Planetary Science XXXVII, 37th Lunar and Planetary Science Conference.

Korotev R. L. (2005) Lunar geochemistry as told by lunar meteorites. Chemie der Erde 65, 297-346.

Korotev R. L. and Zeigler R. A. (2007) Keeping up with the lunar meteorites (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1340, Lunar and Planetary Institute, Houston.

Korotev R. L. and Zeigler R. A. (2014) Chapter 6. ANSMET Meteorites from the Moon, Thirty-five Seasons of U.S. Antarctic Meteorites (1976–2010): A Pictorial Guide to the Collection (editors K. Righter, R.P. Harvey, C.M. Corrigan, and T.J. McCoy), 101–130, Special Publications 68, American Geophysical Union, Washington, D. C., 296 pages, ISBN: 978-1-118-79832-4.

Korotev R. L., Zeigler R. A., and Jolliff B. L. (2004) Compositional constraints on the launch pairing of LAP 02205 and PCA 02007 with other lunar meteorites (abstract), Lunar and Planetary Science XXXV, abstract no. 1416, Lunar and Planetary Institute, Houston.

Korotev R. L., Irving A. J., and Bunch T. E. (2008) Keeping up with the lunar meteorites — 2008 (abstract). In Lunar and Planetary Science XXXIX, abstract no. 1209, 39th Lunar and Planetary Science Conference, Houston.

Korotev R. L., Zeigler R. A., Irving A. J., and Bunch T. E. (2009) Keeping up with the Lunar Meteorites — 2009 (abstract). In Lunar and Planetary Science XL, abstract no. 1137, 40th Lunar and Planetary Science Conference, Houston.

Mikouchi T. T., Chokai J., Arai T., Koizumi E., Monkawa A., and Miyamoto M. (2004) LAP02205 lunar meteorite: Lunar mare basalt with similarities to the Apollo 12 ilmenite basalt (abstract). In Lunar and Planetary Science XXXV, abstract no. 1548, Lunar and Planetary Institute, Houston.

Morris A., Fernandes V., and Burgess R. (2008) Ar-Ar ages for lunar basalt meteorites: A 881757, Y 793169, MIL 05035, LAP 02205, NWA479 and EET 96008. Goldschmidt Conference Abstracts 2008, Geochimica et Cosmochimica Acta 72, 12S, p. A652.

Nishiizumi K., Hillegonds D. J., and Welten K. C. (2006) Exposure and terrestrial histories of lunar meteorites LAP 02205/02224/02226/02436, MET 01210, and PCA 02007 (abstract), In Lunar and Planetary Science XXXVII, abstract no. 2369, Lunar and Planetary Institute, Houston.

Nyquist L. E., Shih C.-Y., Reese Y., and Bogard D. D. (2005) Age of lunar meteorite LAP02205 and implications for impact-sampling of planetary surfaces (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1374, Lunar and Planetary Institute, Houston.

Nyquist L. E., Shih C-Y., and Reese Y. D. (2007) Sm-Nd and Rb-Sr ages for MIL 05035: Implications for surface and mantle sources (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 1702, 38th Lunar and Planetary Science Conference, Houston.

Paniello R. C., Day J. M. D, and Moynier, F. 2012. Zinc isotopic evidence for the origin of the Moon. Nature 490, 376–379, doi:10.1038/nature11507.

Rankenburg K., Brandon A., Norman M., and Righter K. (2005) LAP 02 205: An evolved member of the Apollo 12 olivine basalt suite? (abstract). 68th Annual Meeting of the Meteoritical Society, number 5294.

Rankenburg K., Brandon A. D., and Neal C. R. (2006) Formation interval of the lunar mantle from high-precision Nd-isotope measurements of six lunar basalts (abstract). 69th Annual Meeting of the Meteoritical Society, abstract no. 5036. Lunar and Planetary Institute, Houston.

Rankenburg K., Brandon A. D., and Neal C. R. (2006) Neodymium isotope evidence for a chondritic composition of the Moon. Science 312, 1369-1372.

Rankenburg K., Brandon A. D. and Norman M. D. (2007) A Rb­Sr and Sm­Nd isotope geochronology and trace element study of lunar meteorite LaPaz Icefield 02205. Geochimica et Cosmochimica Acta 71, 2120-2135.

Righter K., Brandon A.D., and Norman M.D. (2004) Mineralogy and petrology of unbrecciated lunar basaltic meteorite LAP 02205 (abstract). In Lunar and Planetary Science XXXV, abstract no. 1667, Lunar and Planetary Institute, Houston.

Righter K., Collins S.J., and Brandon A.D. (2005) Mineralogy and petrology of the LaPaz Icefield lunar mare basaltic meteorites. Meteoritics & Planetary Science 40, 1703–1722.

Schnare D. W., Taylor L. A., Day J. M. D., and Patchen A. D. (2005) Petrography and mineral characterization of lunar mare basalt meteorite LAP 02-224 (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1428, 36th Lunar and Planetary Science Conference, Houston.

Spicuzza M. J., Day J. M. D., Taylor L. A., and Valley J. W. (2007) Oxygen isotope similarities and differences between the earth and moon: Can oxygen isotopes distinguish meteorites on the moon (abstract). In Lunar and Planetary Science XXXVIII, abstract no. 2025, 38th Lunar and Planetary Science Conference, Houston.

Spicuzza M. J., Day J. M. D., Taylor L. A., and Valley J. W. (2007) Oxygen isotope constraints on the origin and differentiation of the Moon. Earth and Planetary Science Letters 253, 254-265.

Taylor L. A and Day J. M. D. (2005) FeNi metal grains in La Paz mare basalt meteorites and Apollo 12 basalts (abstract). In Lunar and Planetary Science XXXVI, abstract no. 1417, 36th Lunar and Planetary Science Conference, Houston.

Wang Y. and Hsu W. (2010) SIMS Pb/Pb dating of Zr-rich minerals from NWA 4734 and LAP 02205/02224: Evidence for the same crater on the Moon (abstract). 73th Annual Meeting of the Meteoritical Society, abstract no. 5024. Lunar and Planetary Institute, Houston.

Wang Y., Hsu W., Guan Y., Li X., Li Q., Liu Y., and Tang G. (2012) Petrogenesis of the Northwest Africa 4734 basaltic lunar meteorite. Geochimica et Cosmochimica Acta 92, 329-344.

Zeigler R. A., Korotev R. L., Jolliff B. L., and Haskin L. A. (2005) Petrology and geochemistry of the LaPaz icefield basaltic lunar meteorite and source-crater pairing with Northwest Africa 032. Meteorit. Planet. Sci. 40, 1073-1102.

Zhang A., Hsu W., Li X., Li Q., Liu Y., Tang G., and Jiang Y. (2010) Cameca IMS-1280 Pb/Pb dating of baddeleyite in LAP 02224 (abstract). In Lunar and Planetary Science XLI, abstract no. 1080, 41st Lunar and Planetary Science Conference, Houston.

Zhang A, Hsu W., Li Q., Liu Y., Jiang Y., & Tang G. (2010) SIMS Pb/Pb dating of Zr-rich minerals in lunar meteorites Miller Range 05035 and LaPaz Icefield 02224: Implications for the petrogenesis of mare basalt. Science China Earth Sciences 53, 327-334. doi: 10.1007/s11430-010-0041-z.

 

 

Back to: Lunar Meteorites | List of Lunar Meteorites | Top of Page

 


Prepared by
: Randy L. Korotev
 
Department of Earth and Planetary Sciences
Washington University in St. Louis

Please don't contact me about the meteorite you think you've found until you read this and this.


e-mail
korotev@wustl.edu

Last revised: 9-Oct-2015